New Organic Compounds for Insect Repellent Research

B. H. ALEXANDER, W. W. SULLIVAN¹, R. T. BROWN, and M. BEROZA Entomology Research Division, Agricultural Research Service, U. S. Department of Agriculture, Beltsville, Md.

W IDESPREAD ACCEPTANCE of deet (N, N-diethyl*m*-toluamide), a personal-use insect repellent (4-7) that is effective against a broad spectrum of biting arthropods (including the yellow fever and common malaria mosquitoes), led us to prepare compounds related to it. To find a better repellent, or possibly, one that might be superior against some of the insect species repelled by deet, we synthesized several hundred compounds for biological

¹ Present address, Rohm and Haas Co., Philadelphia, Pa.

evaluation. This report outlines the preparation and physical constants of 32 compounds not previously recorded. Yields and elemental analyses are given in Tables I and II. These compounds have not been fully evaluated toxicologically and therefore none of the chemicals described in this paper are recommended at this time for personal use.

The amides were prepared by allowing the appropriate acid chloride to react with the amine or imine in benzene, and the carbamates were made by refluxing the sodium salt

Table I. Amides, Sulfonamides, and Carbamates											
					Molecular Formula	Elemental Analyses					
	Compound	Yield, %	B.P./Mm.	$n_{\rm D}^{25^{\circ}}$ or M.P.		Carbon		Hydrogen		Nitrogen	
No.						Calcd.	Found	Calcd.	Found	Calcd.	Found
1	3-Methyl-N-propyl-										
2	crotonamide	61	86-90/2.0	1.4823	C ₈ H ₁₅ NO	68.08	68.29	10.64	10.70	9.93	10.11
	<i>m</i> -Methylbenzyl	-					50.04	0.05	0.54	0.00	0.51
3	diethylcarbamate	78	108-117/0.5	1.4977	$C_{13}H_{19}NO_2$	70.55	70.94	8.65	8.54	6.33	6.71
	2,2-Dimethyl-3-										
	cyclopropane-methyl	61	100-110/0 5	1 4645	C.H. H.NO.	71 10	71.93	10 74	10.87		
4	Fenchyl diethyl-	01	100-110/0.5	1.4040	01511271002	11.10	11.00	10,74	10.01	•••	•••
•	carbamate	50	92-6/0.4	1.4659	C15H27NO2	71.10	71.39	10.74	10.49		
5	2-Methyl-1-(m-toluoyl)-		,		- 10						
	aziridine	59	140 - 146 / 14	1.5425	$C_{11}H_{13}NO$	75.40	76.00	7.99	8.19		
6	N-Cyclohexyl- N -										
	methyl- <i>m</i> -toluamide	73	126 - 142 / 0.1	1.5400	$C_{15}H_{21}NO$	77.92	77.62	9.09	8.58		• • •
7	1-Palmitoylpyrrolidine	79	200-205/1	1.4688	$C_{20}H_{39}NO$	• • •	• • •		• • •	4.53	4.58
8	1-Myristoylpyrrolidine	75	177 - 180 / 0.3	1.4699	$C_{18}H_{35}NO$	76.87	77.21	12.45	12.54	•••	
9	1-Octanoylpyrrolidine	83	110 - 115 / 0.3	1.4659	$C_{12}H_{23}NO$		•••	•••	• • •	7.62	7.90
10	1,1'-Adipoyldi-	-		0 / 0 -		00 0 5	00.01	0.50	0.00		
	pyrrolidine	5	•••	84-85	$C_{14}H_{24}N_2O_2$	66.67	66.01	9.52	9.33	11.12	10.56
11	1-Paimitoyinexamethyi-	69	205 (0.5	1 4797	CHNO	70 14	70 97	10 79	19.90		
10	1 1'-Sebacovldibeva-	63	205/0.5	1.4727	$C_{22}H_{43}NO$	10.14	10.31	12.75	12.09	•••	•••
12	methylenimine	70		5457	CHN.O.	79 13	71.83	10.93	10.94	7 65	7 92
13	1.1'-Azelaovdihexa-	10	• • •	04-07	C 2211401 V 2 C 2	12.10	11.00	10.00	10.04	1.00	1.02
10	methylenimine	63	235/0.5	1.5090		71.59	72.05	10.80	10.93		
14	1,1'-Adipoyldihexa-	00	200, 010	1.0000	021113011202	11.00	, 2.00	10.00	10.00		
	methylenimine	38	220/0.5	1.5151	$C_{18}H_{32}N_2O_2$					8.48	9.12
15	1-Oleoylhexamethyl-		,								
	enimine	77	225/1.5	1.4807	$C_{24}H_{45}NO$					3.83	3.84
16.	1-(p-Methoxyphenyl-										
	sulfonyl)hexamethyl-										
	enimine	83	• • •	60 - 62	$C_{13}H_{19}NO_{3}S$	57.99	57.38	7.06	7.28	• • •	• • •
17	1-(p-Ethoxyphenyl-										
	sulfonyl)hexamethyl-	70		75 70	C H NOS	50.00	50.47	7 40	7 45		
170	N Butul N mothul m	18	• • •	10-18	$C_{14}H_{21}NO_3S$	59.36	59.4 7	1.42	1.45	• • •	•••
178	toluamide	84	129-132/0 3	1 5165	C.H.NO	76.05	75.90	0 33	9.46	6 82	7.016
b	N-Ethyl-N-propyl-m-	04	120-102/0.0	1.0100	0131119110	10.00	10.00	0.00	0.40	0.02	1.01
~	toluamide	75	120 - 124 / 0.1	1.5189	$C_{13}H_{19}NO$	76.05	76.04	9.33	9.32	6.82	6.75
с	N-Ethyl-N-isobutyl-m-		,		- 1010	,		0.00	0.01	0.01	00
	toluamide	73	124 - 129/0.6	1.5067	$C_{14}H_{21}NO$	76.66	76.86	9.65	9.70	6.39	6.46
d	N-Butyl-N-ethyl-m-										
	toluamide	73	123 - 125 / 0.6	1.5099	$C_{14}H_{21}NO$	76.66	76.40	9.65	9.61	6.39	6.41

Table II. Oxabicycloheptenes and Hydrazo Compounds

					R2 N-N I R3	R ₄ R ₅				
		Viold 0		Moleculer	Carbon		Hydrogen		Nitrogen	
No.	R	%	М .Р.	Formula	Calcd.	Found	Calcd.	Found	Calcd.	Found
18	$H = -N = C - (CH_2)_{5}CH_3$	94	61–4 decomp.	$C_{15}H_{20}N_2O_3$	65.19	65.19	7.30	6.71	10.14	10.34
19	$R_1 = -N = C < \frac{(CH_2)_2}{(CH_2)_2} > CH_2$	75	162–4 decomp.	$C_{14}H_{16}N_2O_3$	64.60	64.28	6.20	6.07		
20	$\mathbf{H} = -\mathbf{N} - \mathbf{C}_{6} \mathbf{H}_{5}$	71	178 decomp.	$C_{14}H_{12}N_2O_3$	65.61	65.76	4.72	5.01		
21	$H = -N = C - C_6 H_4 - o(-OCH_3)$	97	168–71 decomp."	$C_{16}H_{14}N_2O_4$	64.42	64.12	4.73	4.63		
22	$H = -N = C - C_6 H_3 - 3,4(-OCH_2O-)$	94	153–4 decomp.⁴	$C_{16}H_{12}N_2O_5$	61.53	61.74	3.87	3.86	8.97	8.88
23	R ₁ =-N=C	89	158 decomp.ª	$C_{19}H_{14}N_2O_3$	71.69	71.94	4.43	4.56		
24	оннн R ₂ , R ₄ =-С-С-С=С(СН ₃) ₂ ; R ₃ , R ₅ = (/ С	20 H	196–201 decomp."	$C_{20}H_{32}N_2O_2$	72.24	71.84	9.70	9.82		
25	$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & R_2, R_4 = -C - C_6 H_4 - o(-OC_2 H_5); R_3, R_4 \end{array}$	51 = H	211-212	$C_{18}H_{20}N_2O_4$	65. 8 4	66.48	6.14	6.08	8.53	8.80
26	$\mathbf{R}_{2}, \mathbf{R}_{3} = -\mathbf{C} - \mathbf{C}_{6}\mathbf{H}_{4} - m(\mathbf{C}\mathbf{H}_{3}); \mathbf{R}_{4}, \mathbf{R}_{5} = -\mathbf{C} - \mathbf{C}_{6}\mathbf{H}_{4} - m(\mathbf{C}\mathbf{H}_{3}); \mathbf{R}_{5} = -\mathbf{C} - \mathbf{C}_{6}\mathbf{H}_{5} - \mathbf{C}_{6}\mathbf$	10 CH₃	139–140	$C_{18}H_{20}N_2O_2$	72.95	73.22	6.80	6.8 9	9.45	9.96
27	$\mathbf{R}_{2}, \mathbf{R}_{3} = -\mathbf{C} - \mathbf{C}_{6}\mathbf{H}_{4} - m(\mathbf{C}\mathbf{H}_{3}); \mathbf{R}_{4}, \mathbf{R}_{5} = -\mathbf{C}_{6}\mathbf{H}_{4} - m(\mathbf{C}\mathbf{H}_{3}); \mathbf{R}_{4}, \mathbf{R}_{5} = -\mathbf{C}_{6}\mathbf{H}_{4} - m(\mathbf{C}\mathbf{H}_{3}); \mathbf{R}_{5} = -\mathbf{C}_{6}\mathbf{H}_{6}\mathbf{H}_{6} - m(\mathbf{C}\mathbf{H}_{3}); \mathbf{R}_{6}\mathbf{H}_{6$	39 –C₂H	100–102 5	$C_{20}H_{24}N_2O_2$	74.04	74.30	7.46	7.37	•••	
28	$\mathbf{R}_{2} = \mathbf{H}; \mathbf{R}_{3} = -\mathbf{C} - \mathbf{C}_{6}\mathbf{H}_{4} - m(\mathbf{C}\mathbf{H}_{3}); \mathbf{R}_{4} \text{ or}$	74	172–173 decomp."	$C_{16}H_{14}N_2O_3$	68.07	68.27	9.92	9.91	5.00	5.46
	H $ $ $R_5 = = C - C_6 H_3 - 3,4 (-OCH_2 O)^{\bullet}$			° The acid, manu	se compour piperonyli iscript was	nds can exi denehydraz accepted fo	ist as cis ide. ° Cor r publicati	and trans npounds l	isomers. 7a–17d ad	<i>m-</i> Toluic Ided after

of the alcohol with the N,N-dialkylcarbamoyl chloride in toluene by the usual procedures. The substituted Schiff's bases-for example, N-piperonylideneamino-7-oxabicyclo-[2.2.1]hept-5-ene-2,3-dicarboximide (compound 22)—were prepared by treating 7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride (2) with hydrazine according to the general directions of Flett and Gardner (3) to give N-amino-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboximide. The appropriate aldehyde was then condensed (1) with the N-amino-oxabicyclo compound to give the desired substituted Schiff's base. N-anilino-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboximide was prepared in good yield by allowing the afore-mentioned anhydride to react with phenylhydrazine (3).

LITERATURE CITED

- (1)Clark, C.C., "Hydrazine," p. 38, Mathieson Chemical Corp., Baltimore, Md., 1953.
- (2)
- Diels, O., Alder, K., Ber. 62, 554 (1929). Flett, L.H., Gardner, W.H., "Maleic Anhydride Derivatives," (3) p. 131, Wiley, New York, 1952.
- Gertler, S.I., Gouck, H.K., Gilbert, I.H., J. Econ. Entomol., (4) in press.
- Gilbert, I.H., Gouck, H.K., Smith, C.N., Ibid., 48, 741 (1955); (5)Soap and Chem. Specialties 33(5), 115, (6), 95 (1957).
- Green, N., J. Econ. Entomol. 51, 707 (1958). (6)
- McCabe, E.T., Barthel, W.F., Gertler, S.I., Hall, S.A., J. Org. Chem. 19, 493 (1954). (7)

RECEIVED for review October 19, 1961. Accepted January 9, 1962.